
Data Modeling Demystified
NEARC Spring 2013

Brian Hebert, Solutions Architect

www.scribekey.com

www.scribekey.com 1

http://www.scribekey.com/

Abstract and Goal
Classic relational database and object-oriented modeling

diagrams, tools, and techniques are often too complicated
for GIS users and project managers to fully understand. This

presentation will demonstrate a simplified approach to
modeling geospatial feature classes and tables, using simple
attribute lists generated through data profiling. Attendees

will then be able to apply this useful technique on their own
data projects for either improving existing data models, or

creating new ones.

Goal: Provide you with a detailed but straightforward
method you can use with your own projects and data.

 Additionally help with better understanding of classic
modeling tools and techniques.

www.scribekey.com 2

Outline
• Review object oriented and relational

modeling
• Discuss RDB normalization
• Identify a communication/skills gap
• Describe refactoring
• Walk through an alternative 3 step table based

modeling technique
• Review domains
• Recap
• Q & A

 www.scribekey.com 3

Data Models and Modeling

• Application: Object Oriented (OO) Class
Diagrams – Generate C#, Java, C++

• Relational Database: Entity-Relationship (ER)
Diagrams – Generate SQL

• Analysis, N-Dimensional Cube: Star, Snowflake
Diagrams (generally unfamiliar to GIS
practitioners) – Create Cube

www.scribekey.com 4

Why Both OO and RDB?

Geodatabase
OO Code

Middle Tier

Presentation

ArcGIS is an Object-Relational System (ORDB). Data and application metadata
are stored in the backend geodatabase, loaded into middle tier, written with OO

C++ code, and presented through rich GUI presentation applications, ArcMap,
ArcCatalog, ArcToolBox, etc. As such, we use both OO and RDB modeling

techniques.

OO Databases never really made it. This class 3 tier approach is how OO data
models are implemented.

The current trend is to use tools like UML to design OO systems.

www.scribekey.com 5

UML OO Diagraming

UML (Unified Modeling
Language) diagrams capture type
hierarchies. They show type
family trees, focusing on how
more specific sub-classes inherit
properties and behavior from
more general super-classes.

Becoming familiar with UML and
related tools requires significant
time and experience.

www.scribekey.com 6

Designing in ArcGIS: CASE Tools or ArcCatalog

With CASE or ArcCatalog Tools, the goal is the same, to generate a Geodatabase

ESRI CASE Tools ArcCatalog Tools

Geodatabase Diagram

www.scribekey.com 7

RDB Entity-Relationship Diagrams and Tools

Entity Relationship diagrams and related tools are typically used to create highly
normalized, editing/production databases. Normalization protects referential

integrity and prevents anomalies that can compromise data quality, break
relationships, etc.

The models we typically use in GIS are often highly de-normalized. De-

normalized databases are much easier to query and use for maps and reports.
www.scribekey.com 8

De-Normalized Data Example: Navteq

If Navteq Streets data were normalized there would be multiple
separate tables for street names, town names, states, zip codes, street

types, etc. If this were the case, creating Geocoding or Routing
applications would be MUCH more complex

www.scribekey.com 9

SQL Query: De-Normalized and Normalized

SELECT ID, NAME FROM STREETS WHERE NAME=‘Elm St’

SELECT STREETS.ID, STREET_NAMES.NAME
FROM STREETS INNER JOIN STREET_NAMES ON

STREETS.STREET_NAME_ID = STREET_NAMES.ID AND
STREET_NAMES.NAME=‘Elm St’

Queries for normalized data are much more complex.
Additionally, if data is being used in a read-only mode,

there is typically no reason for highly normalized models.

WARNING! In spite of this, many data RDB data modelers
start a project with the assumption that the data should

be highly normalized.

www.scribekey.com 10

GIS Users Data Modelers
ISO Standards Bodies

OGC
(Druids)

The Tower of Babel

UML, XSD
 GML

ISO 19XXX,
…

Layers
Attributes
Symbols

…

?

What do
they mean?

E=MC2,
Abracadabra

…

www.scribekey.com 11

An Alternate Technique

1) Use database tables to capture/store information about
feature classes, tables, attributes, and domain values. This
is metadata.

2) Arrange lists of attributes and entities in cross reference
matrices.

3) Use SQL queries to discover your classes, and help you
create your entities.

GIS users are typically very familiar with data in tables. There
is no immediate need to learn an unfamiliar or complex

diagraming technique to do what you need to do.

This helps involves the people that know the most about the
data in the modeling process.

www.scribekey.com 12

Scenario
• A university has asked us to

integrate existing tabular
data describing Students,
Faculty, and Staff, with GIS
building layer.

• They have asked for a class
diagram.

• They also want to create
tables in ArcGIS

• They want to determine who
is where, when, etc.

• The focus is not GIS per se,
but will help us concentrate
on important concepts.

• Reduced attribute sets will
be used.

Students

Faculty

Staff

Buildings

www.scribekey.com 13

Attribute Lists

STUDENTS FACULTY STAFF
Student_Name PROF_Name Name

ST_DOB DOB Birthday
Major Department Title
GPA Salary Supervisor

Student_Year Tenure Salary
Dormatory Highest Degree Office

Advisor Office

From an initial view of the 3 entity attributes
we see that they share some common

general attributes as well as having some
specialized attributes of their own.

www.scribekey.com 14

Sidebar: Refactoring
• A great deal of complex OO and

RDB data modeling is carried
out in data-free environments,
assuming a blank slate to start
with.

• In reality, this is rarely the case,
and we typically have to fit
existing data into our models.

• As such, it is typically helpful to
use a data-driven approach to
modeling, where the focus is on
changing existing entities,
rather than creating new ones.

• This is related to a technique
called REFACTORING.

www.scribekey.com 15

Creating Entity and Attribute Metadata Tables

Step 1 is to capture Attribute Lists for each of the Entities in your model. If
the model is based on existing data, this can be done with a data profiling

tool. Otherwise, it can be done manually.

Here Attribute information including Entity, Data Type, Length, Uniqueness,
and FGDC XML Metadata definitions have been captured with a data profiler

in MS Access.
www.scribekey.com 16

Standardize Raw Data Attribute Names

• Mapping original raw
attribute names to
standardized sets is a
key part of
refactoring.

• This helps determine
the unique list of
attributes found
across all entities,
and is required for
this technique to
work.

Entity Attribute_Raw Attribute_Standard
Student Student_Name NAME

Student ST_DOB DOB
Student Major DEPARTMENT

Student GPA GPA

Student Student_Year STUDENT_YEAR

Student Dormatory BUILDING
Student Advisor FACULTY

Faculty PROF_Name NAME
Faculty DOB DOB
Faculty Department DEPARTMENT

Faculty Salary SALARY

Faculty Tenure TENURE

Faculty Highest Degree HIGHEST_DEGREE

Faculty Office BUILDING

Staff Name NAME
Staff Birthday DOB

Staff Title TITLE
Staff Supervisor SUPERVISOR
Staff Salary SALARY

Staff Office BUILDING

www.scribekey.com 17

Step 1: Standardized Entity Attribute List
ENTITY ATTRIBUTE
Student Name
Student DOB
Student Major
Student GPA
Student Student_Year
Student Building
Student Advisor
Faculty Name
Faculty DOB
Faculty Department
Faculty Salary
Faculty Tenure
Faculty Highest_Degree
Faculty Building

Staff Name
Staff DOB
Staff Title
Staff Supervisor
Staff Salary
Staff Building

What’s in a name?

How we name entities, attribute, and domain values is very
important for easy-to-use, self describing data models. One
important rule of thumb: An attribute meaning the same
thing should have the same name, data type, length, and
domain, in all the entities it appears in.

In general, it is best to pick very commonly used and
understood words vs. trying to be consistent.

When choosing names and terms it can be helpful to see
which ones are the most commonly used by getting word
counts with Google. For example, Google returns 105 million
hits when searching for ‘lon/lat’ and 23.8 million when
searching for ‘lat/lon’ indicating ‘lon/lat’ is a far more
common term.

www.scribekey.com 18

Step 2: Create an Attribute Entity Matrix

Pivot the initial list of Entities and Attribute, create a unique list of attributes
and pivot the Entities to create a matrix. Note some attributes which actually
use the same domain might have different names, so choose a single name
for these, e.g., Major and Department become Department, Dormitory and

Building use Building This can be done with SQL and/or other tools.

 Use TEXT data types for entity flags and PATTERN
UPDATE ATT_ENT_MATRIX SET GROUP = STUDENTS & FACULTY & STAFF

ID ATTRIBUTE STUDENTS FACULTY STAFF GROUP
1 Advisor 1 0 0 100

2 Department 1 1 0 110
3 DOB 1 1 1 111

4 GPA 1 0 0 100

5 Highest Degree 0 1 0 010

6 Name 1 1 1 111
7 Building 1 1 1 111

8 Salary 0 1 1 011
9 Student_Year 1 0 0 100

10 Supervisor 0 0 1 001

11 Tenure 0 1 0 010

12 Title 0 0 1 001

www.scribekey.com 19

Step 3: Get Distinct Attribute Groups

Sort Attributes by Group. A supplemental, and sometimes challenging,
step is to name the Groups.

Here we have 6 distinct sets of Attributes. Each Entity uses a set of
groups. These equate to classes in OO design. Each feature class we

create will contain all of the Attribute Groups it uses.

ATTRIBUTE GROUP

Supervisor 001
Title 001

Highest Degree 010
Tenure 010

Building 011

Salary 011
Advisor 100

GPA 100
Student_Year 100

Department 110
DOB 111

Name 111

ID GROUP GROUP_MEMBERS CLASS_NAME

1 001 Staff_Info Staff_Info

2 010 Faculty_Info Faculty_Info

3 011 Faculty_Staff_Info Worker

4 100 Student_Info Student_Info

5 110 Student_Faculty_Info Education

6 111 Student_Faculty_Staff_Info Person

www.scribekey.com 20

Class Diagram from Attribute Groups

Education

Department

We see the same information we created using Attribute Groups here as a classic OO type hierarchy.
Note that Faculty inherits from both Education and Worker. Instead of using inheritance trees it is

sometimes easier to use the concept of interfaces. Note with C# and Java, multiple inheritance is not
allowed, as it is with C++. Note also that the classes are divided into 2 types, abstract which will never

actually be created, and concrete, which inherit from the abstract classes, but only show specific
attributes. Note this diagram does not show relationships between entities.

Student

Advisor

GPA

Student_Year

Faculty

Highest Degree

Tenure

Staff

Supervisor

Title

Abstract Class

Concrete Class

www.scribekey.com 21

Worker

Salary

Person

DOB

Name

Building

Attribute Sets and Interfaces

Another way to look at the Attribute Groups is as overlapping sets. Note out
of a possible 7 groups, we ended up with a total of 6. This is because there

were no attributes used only by Students and Staff, shown in the area labeled
6 above. These overlapping areas are equivalent to the class interfaces.

STU FAC

STF

1 2

3

7

4

6 5

www.scribekey.com 22

The Resulting Tables
Faculty
DOB
Name
Building
Department
Salary
Highest_Degree
Tenure

Staff
DOB
Name
Building
Salary
Supervisor
Title

Simply listing the attributes for each entity provides one of the
easiest to understand and useful views.

The tables holding the entity and attribute information in the
metadata database can be used by relatively simple application

to generate the tables.
So, why is it so important to know what attribute groups

different entities share?
www.scribekey.com 23

Student_Year
DOB
Name
Building
Department
Adivsor
GPA
Student_Year

SQL Union Views
If you know what attribute groups different entities
have in common, you can construct views in
relational databases, using the UNION clause, to see
different things as the same type of things.

SELECT NAME, ‘STUDENT’ AS TYPE, BUILDING
FROM STUDENTS

UNION

SELECT NAME, ‘FACULTY’ AS TYPE, BUILDING
FROM FACULTY

UNION

SELECT NAME, ‘STAFF’ AS TYPE, BUILDING FROM
STAFF

You could then add the UNION view to ArcMap and
relate it to the buildings polygon layer, to help see
all the people in a single building.

You could do this with any of the attribute sets
(classes) the entities have in common, e.g., Worker.

NO. NAME STUDENT BUILDING

1

2

3

NO. NAME FACULTY BUILDING

1

2

3

NO. NAME STAFF BUILDING

1

2

3

NO. NAME TYPE BUILDING

1

2

3

4

5

6

7

8

9

Union of 3 Different Tables

1 Resulting View with Same Data

www.scribekey.com 24

Capturing Relationships

• Describing
relationships
between entities is
an important part
of data modeling

• Again, it can be
useful to capture
this information in
metadata tables
and matrices.

Geodatabase Relationships captured by
data profiling tool, in MS Access, showing
ORIGIN, DESTINATION, and CARDINALITY

 Student Faculty Staff Building
Student N->1 NA N->1

Faculty NA NA
Staff N->1

Building

Easy to construct entity relations matrix

www.scribekey.com 25

A Word about Domains

• Explicitly specifying the set of values that can be used for
an attribute is an important part of data modeling.

• Even if you are not building a normalized data model, it is
still useful to capture domains; this information can be
used for both data validation and application GUI
construction.

• This information can also be stored in the metadata
repository database as well.

• Here are 3 methods for this:
1) Lookup Tables: Valid list of values, e.g., Departments
2) Regular Expressions: allowed patterns, e.g.,

MM/DD/YYYY
3) SQL Expressions: Flexible assertion, e.g., range, match

to another attribute, etc.

www.scribekey.com 26

Domains as Lookup Tables
Student_Years
Freshman
Sophmore
Junior
Senior

Departments

Geography

Economics

Engineering

Humanities

History

Degrees

Bachelors

Masters

PhD

Certificate

Title

Administration

Physical Plant

Grounds

IT

Security

Even if you are not doing full normalization, it’s important to capture domain values in
tables. These can then be used to validate data and help build GUI front end pick lists.

Note an empty database, with no features or rows, still has domain tables.
www.scribekey.com 27

Recap
• Consider a simple, table-centric, systematic and mechanical

approach to data modeling.
• You can use a table/matrix approach to modeling your entities

(feature classes and tables) as collections of attribute sets, with
some attribute sets common to multiple entities. You can capture
relationships this way too.

• You can easily capture this information in a metadata database,
then use querying and sorting to help you with your task.

• The resulting attribute sets will match a class inheritance and/or an
class interface diagram.

• When you know what attribute sets are common to multiple
entities, you can use UNION views to query on the common
elements.

• Don’t automatically start creating a normalized set of entities if
your database is to support querying, reports, and map making.

• Even if you aren’t normalizing, it’s still useful to store domains in
your metadata database as lookup tables, regular expressions, and
SQL Statements.

www.scribekey.com 28

Thank You – Q&A

Brian Hebert
www.scribekey.com

www.scribekey.com 29

http://www.scribekey.com/

