Data Modeling Demystified
NEARC Spring 2013

Brian Hebert, Solutions Architect

www.scribekey.com

www.scribekey.com


http://www.scribekey.com/

Abstract and Goal

Classic relational database and object-oriented modeling
diagrams, tools, and techniques are often too complicated
for GIS users and project managers to fully understand. This

presentation will demonstrate a simplified approach to
modeling geospatial feature classes and tables, using simple
attribute lists generated through data profiling. Attendees
will then be able to apply this useful technique on their own
data projects for either improving existing data models, or
creating new ones.

Goal: Provide you with a detailed but straightforward
method you can use with your own projects and data.

Additionally help with better understanding of classic
modeling tools and techniques.



Outline

Review object oriented and relational
modeling

Discuss RDB normalization
dentify a communication/skills gap
Describe refactoring

Walk through an alternative 3 step table based
modeling technique

Review domains
Recap
Q&A




Data Models and Modeling

* Application: Object Oriented (OO) Class
Diagrams — Generate C#, Java, C++

» Relational Database: Entity-Relationship (ER)
Diagrams — Generate SQL

* Analysis, N-Dimensional Cube: Star, Snowflake
Diagrams (generally unfamiliar to GIS
practitioners) — Create Cube



Why Both OO and RDB?

OO Code

Geodatabase Middle Tier

Presentation

ArcGIS is an Object-Relational System (ORDB). Data and application metadata
are stored in the backend geodatabase, loaded into middle tier, written with OO
C++ code, and presented through rich GUI presentation applications, ArcMap,
ArcCatalog, ArcToolBox, etc. As such, we use both OO and RDB modeling
techniques.

OO Databases never really made it. This class 3 tier approach is how OO data
models are implemented.

The current trend is to use tools like UML to design OO systems.

www.scribekey.com 5



UML OO Diagraming

e L Core Geodatabase Model

Type :
inheritance i

Composition

coclass

Association Multiplicity

UML (Unified Modeling
Language) diagrams capture type
hierarchies. They show type
family trees, focusing on how
more specific sub-classes inherit
properties and behavior from

object class . geodatabase
more general super-classes. — —
— - et oo
o VE— s [E
Becoming familiar with UML and o —

feature e

related tools requires significant

time and experience.

www.scribekey.com



Designing in ArcGIS: CASE Tools or ArcCatalog

What are CASE tools? Geodatabase Designer 2 k|
“There ar thee general srtegies o creating goodatabuses. The  performance when loading data ino a geodtabase schen, X =
irst tweo straless ting dalabases espocially when working with network data Export Schema ¥ Import Schema ¥ Lkility | =| =/ | E | @
peodatobuse eCatalog and Wt

!

s | —

333 Domains To XML

'}l ObjectClasses To XML
2, Relationships To XML

=l GeometricNetworks To XML
EI Topologies To xmL

Geodatabase To XML

A
Export Schema | Import Schema ¥ Utity ~ | X = | @ | )
@ Import From XML

ot 10 start

. but typically
ant 1o populaie that
impact

Figure 5 ESRI Geodatabase Designer 2 Toolbar

2 IermooucTIoN 10 CASE Toous

ESRI CASE Tools ArcCatalog Tools

HYDRAULICS -

FEMA Flood Study Geodatabase %
1 = - . = M - e Ez-=— Q@ @ p .

Geodatabase Diagram

E R i

With CASE or ArcCatalog Tools, the goal is the same, to generate a Geodatabase

www.scribekey.com 7



RDB Entity-Relationship Diagrams and Tools

| Student ;. :
Permanent_Address_Detail| [PK Student wumber S
ermane i | &
vt - | Socisl Securty Number ~ .~ PF Student Number
PF Student Number Name | PF Course_Number
Cty - Date Of Birth PF Offering_Department
<8 = | S - \
State }—< Sex t—} 7
Z e Current Address )
Student, L Current Pho mber
Permanen t Address
Permanent Ph: Number
Class
) %
I ‘ Section
}‘: Instructor
A\ 2 Samaster
Student_Department ity Year
Course
PF Student Number
PF Code R PK Section_Number
PF Course_Number
* PF Code
v,—L_"_\ - R ——
Grade_Report % .
Lettar_Grade
Numeric_Grade >0~
PF Student Number
PF Section_Number
Course
Name
Descri iption
PK Course_Number
Semester_Hours
Course_Leve
PF Offering_Department
N e—

Entity Relationship diagrams and related tools are typically used to create highly
normalized, editing/production databases. Normalization protects referential
integrity and prevents anomalies that can compromise data quality, break
relationships, etc.

The models we typically use in GIS are often highly de-normalized. De-
normalized databases are much easier to query and use for maps and reports.

www.scribekey.com



De-Normalized Data Example: Navteq

@ Boston_Metro_FCC.mxd - ArcMap - ArcView
File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Help
Ll & - | 110168 - G E O B | 82 Editor o
B0k @ B R B
eraeos ey
Table Of Contents B
; B,
Glc 8 @
5 M AM_Antennas ~
Le 8m<ua,m
5 M FM_Antennas
| | 5 O Microwave Tov
<@
= O TVNTSC =
o . ERE- LT
w o & TV.DIGITAL wm‘,m Strests x
[ - WINTNW X —
. OBJECTID® | Shape* | LINK_ID ST_HAME FEAT_ID | ST_LANGCD | NUM_STNMES ~
= O paging 47 | Polyiine 16832437 | STEARNS RD 732925129 | ENG 1
. 48 | Polyiine 16832438 | STEARNS RD 732925129 | ENG 1
5 O Lsnd_Mobile_p Polyine | 1683243 | PHEASANT LN 77981215 | ENG 1
N Polyine | 16832440 | PHEASANT LN 717961215 | ENG 1
7 Polyline 16832441 | PHEASANT LN 717981215 | ENG 1
= O Land_Mobile C Polyline 16832442 | PHEASANT LN 717981215 | ENG 1
® Polyline 16832443 | PHEASANT LN 717981215 | ENG 1
5 O Land_Mobile_b Polyine | 16832444 | PHEASANT LN 717981215 | ENG 1
o Polyne | 16832445 | PHEASANT LN TAT961215 | ENG 1
Cellular_Towers Polyline 16832448 | PHEASANT LN 717981215 | ENG 1
1 Polyline 16832447 | HAWTHORNE LN 718489526 | ENG 1
& [ BRS_EBS_Transi s Polyline 16832448 | HAWTHORNE LN 718489526 | ENG 1
N Polyine | 1832448 | HAWTHORNE LN 718489526 | ENG 1
Polyine | 1832450 | HAWTHORNE LN 718489526 | ENG 1
Antenna Struct 61 Polyine | 16832452 | STONEGATE LN 735342635 | ENG 1
82 | Polyline 16832453 | STONEGATE LN 735342635 | ENG 1
. Street| 63 | Polyline 16832454 | STONEGATE LN 735342635 | ENG 1
— 64 | Polyline 16832455 | STONEGATE LN 735342635 | ENG 1
5 O sk_clipper S [Polyine | 16832456 | STONEGATE LN 735342635 | ENG 1
66 |Polyine | 16832457 | STONEGATE LN 735342635 | ENG 1
CouSub_2010C/ 67 | Polyline 16832458 | STONEGATE LN 735342635 | ENG 1
68 | Polyline 16832453 | STONEGATE LN 735342635 | ENG 1
N 63 | Polyline 16832460 | DUDLEY RD 734801436 | ENG 1
= O Counties 70 | Polylne 16832461 | EMERY RD 732086333 | ENG 1
o 71| Polyine | 16632462 | EMERY RD 732956333 | ENG 1
= [0 TV_B_Contours 72 | Polyline 16832483 | EMERY RD 732056333 | ENG 1
= ad 73 | Polyiine 16832464 | EMERY RD 732956333 | ENG 1
(] [ * 74 | Polyiine 16832473 | VIRGINIA RD 717383833 | ENG 1
S | Polyline 16832475 | FULLER LN 732957570 | ENG 1
< [Lm D
NION ~%e "o 0 om (0 out of *2000 Selected)
CAST{E pL. 2 £
) h FM_Antennas | AM_Antennas | Microweve_Tow... | Antenna_Struct... | FCC_POIS | CouSub_2010Ce... | Streets
BWERY D ) / i
[@ealon « v
~71.218 42.313 Decimal Degrees

If Navteq Streets data were normalized there would be multiple
separate tables for street names, town names, states, zip codes, street
types, etc. If this were the case, creating Geocoding or Routing
applications would be MUCH more complex

www.scribekey.com 9



SQL Query: De-Normalized and Normalized

SELECT ID, NAME FROM STREETS WHERE NAME=‘Elm St’

SELECT STREETS.ID, STREET_NAMES.NAME

FROM STREETS INNER JOIN STREET_NAMES ON
STREETS.STREET_NAME_ID = STREET_NAMES.ID AND
STREET_NAMES.NAME=‘EIm St’

Queries for normalized data are much more complex.
Additionally, if data is being used in a read-only mode,
there is typically no reason for highly normalized models.

WARNING! In spite of this, many data RDB data modelers
start a project with the assumption that the data should
be highly normalized.

www.scribekey.com 10



Layers UML, XSD

Attributes GML
Symbols ISO 19XXX,

GIS Users The Tower of Babel Data Modelers

ISO Standards Bodies
E=MC2, 0GC

Abracadabra (Druids)

What do

they mean?

www.scribekey.co 11



An Alternate Technique

1) Use database tables to capture/store information about
feature classes, tables, attributes, and domain values. This

is metadata.

2) Arrange lists of attributes and entities in cross reference
matrices.

3) Use SQL queries to discover your classes, and help you
create your entities.

GIS users are typically very familiar with data in tables. There
is no immediate need to learn an unfamiliar or complex
diagraming technique to do what you need to do.

This helps involves the people that know the most about the
data in the modeling process.



Scenario

A university has asked us to 3k
integrate existing tabular | "js.. s
data describing Students, %_, =
Faculty, and Staff, with GIS &‘ﬁ%\“: g%

T Voo ,:,:(‘.“." :
building layer. | N iy

T ‘\‘ ‘.3 AL L‘%
They have asked for a class : éﬁf‘f % 1
diagram. - o
| ot

They also want to create (4 1| \
tables in ArcGIS B =

They want to determine who
is where, when, etc.

] Faculty —> Buildings
The focus is not GIS per se,

but will help us concentrate 1 1

on important concepts.

www.scribekey.com 13

Reduced attribute sets will
be used.



Attribute Lists

STUDENTS FACULTY STAFF
Student_Name PROF_Name Name
ST _DOB DOB Birthday
Major Department Title
GPA Salary Supervisor
Student_Year Tenure Salary
Dormatory Highest Degree Office
Advisor Office

From an initial view of the 3 entity attributes
we see that they share some common
general attributes as well as having some
specialized attributes of their own.

www.scribekey.com



Sidebar: Refactoring

A great deal of complex OO and
RDB data modeling is carried
out in data-free environments,
assuming a blank slate to start
with.

In reality, this is rarely the case,
and we typically have to fit
existing data into our models. Iy —

L
PRAMOD |. SADALAG] "f.';;}:/-I.\

.-

| DATABASES

')1 ':.'x N
R

-4 |
ate

As such, it is typically helpful to
use a data-driven approach to
modeling, where the focus is on
changing existing entities,
rather than creating new ones.

Fpu;?

This is related to a technique
called REFACTORING.

www.scribekey.com

R EFACTORING *vu*

15



Creating Entity and Attribute Metadata Tables

& > Microsoft Access o B =
nene [ A F e -@
Ala s selection - =5 New ‘ B
Lt\{’ % cut 4] ascending ¥z selection El New X Totals }3 2, Replace P Tn
= E3 copy %1 Descending ¥ Advanced - eHsave 5 speliing = GoTo~ §
View Fiter Refresh Find Switeh . =
c v " X oeiete - Bwwore - Iz saect- winiowi<| B L DA -2
s Clipboard Sort & Filter Records Find Window Test Formatting
Al Access Objects @ <«
Tables x sk coL = B =
& co.oom OBJECT - DB_NM - TAB NM - COL_NM - COL_AUAS - DATA_TYPE-~ DATA_LEN - UNIQ - COL_DEF -| DEFSRC - L4
B3 core 1st_louis  arealm FID FID o 4 A
ER cosus 2st_louis  arealm Shape Shape Geometry 0 1
B opva 3 st louis  arealm STATEFP STATEFP string 2y Current state Federal Information Processing Standards (FIPS) code U.S. Census Bu
B wo_oom 4 st_louis  arealm COUNTYFP COUNTYFP string 3 Y Current county Federal Information Processing Standards (FIPS) code U.S. Census Bu
B mova 5 st_louis  arealm ANSICODE ANSICODE string 8y Current official code for the landmark for use by federal agencies for data tr U.S. Census Bu
5 san 6 st_louis arealm AREAID AREAID String 2y Area landmark identifier U.S. Census Bu
& sco 7 st_louis  arealm FULLNAME FULLNAME string 100 ¥ Concatenation of expanded text for prefix qualifier, prefix direction, prefix U.S.Census Bu
£ skcoLren 8 st_louis  arealm MTFCC MTFCC String 5y MAF/TIGER feature class code U.S. Census Bu
& skcoLuse 9 st louis  arealm ALAND ALAND Double 12y Current land area U.S. Census Bu
B «os
= - 10 st_louis  arealm AWATER AWATER Double ny Current water area U.S. Census Bu
SK_DOM_MCH
. 11 st_louis  arealm INTPTLAT INTRTLAT string 1y Current latitude of the internal point U.S. Census Bu
SKIDX
12 st_louis  arealm INTPTLON INTPTLON string 0y Current longitude of the internal p U.S. Census Bu
EH skReG_MCH
13 st louis  areawater  FID FID o a
B skrel -
14 st louis  areawater  Shape Shape Geomets 0
= = P P ry
B skTB_alp 15st_louis  areawater | STATEFP STATEFP string 2 Current state Federal Information Processing Standards (FIPS) code U.S. Census Bu
= scnnon 16 st louis  areawater  COUNTYER COUNTYFP String 3 Current county Faderal Information Processing Standards (FIPS) code U.S. Census Bu
B skTaB_USE 17 st louis  areawater  ANSICODE ANSICODE String 8 Current official code for the water body for use by federal agencies for data U.S. Census Bu
= sva 18 st_louis  areawater  HYDROID HYDROID String 2y Area hydrography identifier U.S. Census Bu
= s 19st_louis  areawater  FULLNAME FULLNAME string 100 ¥ Concatenation of expanded text for prefix qualifier, prefix direction, prefix U.S. Census Bu
== 20 st louis  areawater  MTFCC MTFCC String 5 MAF/TIGER feature class code U.S. Census Bu
£ ous_corRvw 21 st louis  areawater  ALAND ALAND Double 14 Current land area U.S. Census Bu
B skcoLvw 22 st_louis  areawater AWATER AWATER Double 18y Current water area U.S. Census Bu
& skeBvw 23st_ouis areawater | INTPTLAT INTPTLAT String 1y current latitude of the internal point U.S. Census Bu
o sk 24 st_louis  areawater  |INTPTLON INTPTLON String 12V Current longitude of the internal point U.S. Census Bu
FskvaLww 25 st_louis  bg0o FID FID o a
Forms %
26 st_louis  bgoo Shape Shape Geometry 0
= sk
27 st_louis  bgoo STATEFPOO STATEFPOD string 2 Census 2000 state Federal Information Processing Standards (FIPS) codes  U.S. Census Bu
98 ct lonie _han0 counTvEDnn PANNTVEDNN  Girina a Parcie MM b Eardaral Infrrm atinn Draracsing Grandarde (E1DC rnda | 11€ Pance Y.
Record: 4« 10f318 » M ¥ Search
Datasheet View Num Looe |[E] B @ £

Step 1 is to capture Attribute Lists for each of the Entities in your model. If
the model is based on existing data, this can be done with a data profiling
tool. Otherwise, it can be done manually.

Here Attribute information including Entity, Data Type, Length, Unigqueness,
and FGDC XML Metadata definitions have been captured with a data profiler
in MS Access.

www.scribekey.com

16



Standardize Raw Data Attribute Names

* Mapping original raw

attribute names to
standardized sets is a
key part of
refactoring.

This helps determine
the unique list of
attributes found
across all entities,
and is required for
this technique to
work.

Entity | Attribute Raw | Attribute Standard
Student |Student Name |[NAME
Student ST _DOB DOB
Student |Major DEPARTMENT
Student |[GPA GPA
Student [Student_Year STUDENT_YEAR
Student |Dormatory BUILDING
Student |Advisor FACULTY
Faculty |PROF_Name NAME
Faculty |DOB DOB
Faculty |Department DEPARTMENT
Faculty |Salary SALARY
Faculty [Tenure TENURE
Faculty |Highest Degree |HIGHEST DEGREE
Faculty |Office BUILDING
Staff Name NAME
Staff Birthday DOB
Staff Title TITLE
Staff Supervisor SUPERVISOR
Staff Salary SALARY
Staff Office BUILDING

www.scribekey.com

17



Step 1: Standardized Entity Attribute List

What’s in a hame?

How we name entities, attribute, and domain values is very
important for easy-to-use, self describing data models. One
important rule of thumb: An attribute meaning the same
thing should have the same name, data type, length, and
domain, in all the entities it appears in.

In general, it is best to pick very commonly used and
understood words vs. trying to be consistent.

When choosing names and terms it can be helpful to see
which ones are the most commonly used by getting word
counts with Google. For example, Google returns 105 million
hits when searching for ‘lon/lat’ and 23.8 million when
searching for ‘lat/lon’ indicating ‘lon/lat’ is a far more
common term.

GO_ fgl(’.' lon/lat

Web mages Maps Shopping More Search tools

www.scribekey.com

ENTITY ATTRIBUTE
Student Name
Student DOB
Student Major
Student GPA
Student Student_Year
Student Building
Student Advisor
Faculty Name
Faculty DOB
Faculty Department
Faculty Salary
Faculty Tenure
Faculty Highest_Degree
Faculty Building
Staff Name
Staff DOB
Staff Title
Staff Supervisor
Staff Salary
Staff Building
18




Step 2: Create an Attribute Entity Matrix

ID ATTRIBUTE STUDENTS FACULTY STAFF GROUP
1 Advisor 1 0 0 100
2 Department 1 1 0 110
3 DOB 1 1 1 111
4 GPA 1 0 0 100
5 Highest Degree 0 1 0 010
6 Name 1 1 1 111
7 Building 1 1 1 111
8 Salary 0 1 1 011
9 Student_Year 1 0 0 100
10 Supervisor 0 0 1 001
11 Tenure 0 1 0 010
12 Title 0 0 1 001

Pivot the initial list of Entities and Attribute, create a unique list of attributes
and pivot the Entities to create a matrix. Note some attributes which actually
use the same domain might have different names, so choose a single name
for these, e.g., Major and Department become Department, Dormitory and
Building use Building This can be done with SQL and/or other tools.

Use TEXT data types for entity flags and PATTERN
UPDATE ATT_ENT_MATRIX SET GROUP = STUDENTS & FACULTY & STAFF .

www.scribekey.com



Step 3: Get Distinct Attribute Groups

ID | GROUP GROUP_MEMBERS CLASS NAME
1 001 Staff_Info Staff_Info

2 010 Faculty Info Faculty_Info
3 011 Faculty_Staff_Info Worker

4 100 Student_Info Student_Info
5 110 Student_Faculty_Info Education

6 111 |Student_Faculty_Staff_Info Person

ATTRIBUTE GROUP
Supervisor 001
Title 001
Highest Degree 010
Tenure 010
Building 011
Salary 011
Advisor 100
GPA 100
Student_Year 100
Department 110
DOB 111
Name 111

Sort Attributes by Group. A supplemental, and sometimes challenging,

step is to name the Groups.

Here we have 6 distinct sets of Attributes. Each Entity uses a set of
groups. These equate to classes in OO design. Each feature class we

create will contain all of the Attribute Groups it uses.

www.scribekey.com

20




Class Diagram from Attribute Groups

Person
Abstract Class DOB
Concrete Class Name
Building
Education Worker
Department Salary
Student —
Advisor Faculty ta .
GPA Highest Degree Syfemsor
Student_Year Tenure Title

We see the same information we created using Attribute Groups here as a classic OO type hierarchy.
Note that Faculty inherits from both Education and Worker. Instead of using inheritance trees it is
sometimes easier to use the concept of interfaces. Note with C# and Java, multiple inheritance is not
allowed, as it is with C++. Note also that the classes are divided into 2 types, abstract which will never
actually be created, and concrete, which inherit from the abstract classes, but only show specific

attributes. Note this diagram does not show relationships between entities.
www.scribekey.com 21



Attribute Sets and Interfaces

Another way to look at the Attribute Groups is as overlapping sets. Note out
of a possible 7 groups, we ended up with a total of 6. This is because there
were no attributes used only by Students and Staff, shown in the area labeled
6 above. These overlapping areas are equivalent to the class interfaces.



The Resulting Tables

Student_Year Faculty Staff

DOB DOB DOB
Name Name Name
Building Building Building
Department Department Salary
Adivsor Salary Supervisor
GPA Highest Degree Title
Student_VYear Tenure

Simply listing the attributes for each entity provides one of the
easiest to understand and useful views.

The tables holding the entity and attribute information in the
metadata database can be used by relatively simple application
to generate the tables.

So, why is it so important to know what attribute groups
different entities share?



SQL Union Views

If you know what attribute groups different entities
have in common, you can construct views in
relational databases, using the UNION clause, to see
different things as the same type of things.

SELECT NAME, ‘STUDENT’ AS TYPE, BUILDING
FROM STUDENTS

UNION

SELECT NAME, ‘FACULTY’ AS TYPE, BUILDING
FROM FACULTY

UNION

SELECT NAME, ‘STAFF’ AS TYPE, BUILDING FROM
STAFF

You could then add the UNION view to ArcMap and
relate it to the buildings polygon layer, to help see
all the people in a single building.

You could do this with any of the attribute sets
(classes) the entities have in common, e.g., Worker.

www.scribekey.com

NO. NAME STUDENT |BUILDING
1
2
3

NO. NAME FACULTY |BUILDING
1
2
3

NO. NAME STAFF BUILDING
1
3

Union of 3 Different Tables

NO.

NAME

TYPE

BUILDING

X (N[O [P WIN |-

Vo]

1 Resulting View with Same Data

24



Capturing Relationships

* Describing
relationships
between entities is
an important part
of data modeling

e Again, it can be
useful to capture
this information in
metadata tables
and matrices.

EITSNISINEEIR  comectiier Comactfaripection Rectfer

Geodatabase Relationships captured by
data profiling tool, in MS Access, showing
ORIGIN, DESTINATION, and CARDINALITY

Student | Faculty Staff | Building
Student N->1 NA N->1
Faculty NA NA
Staff N->1
Building

Easy to construct entity relations matrix




A Word about Domains

Explicitly specifying the set of values that can be used for
an attribute is an important part of data modeling.

Even if you are not building a normalized data model, it is
still useful to capture domains; this information can be
used for both data validation and application GUI
construction.

This information can also be stored in the metadata
repository database as well.

Here are 3 methods for this:
1) Lookup Tables: Valid list of values, e.g., Departments

2) Regular Expressions: allowed patterns, e.g.,
MM/DD/YYYY

3) SQL Expressions: Flexible assertion, e.g., range, match
to another attribute, etc.



Student_Years Departments Title
Freshman Geography Administration
Sophmore Economics Physical Plant
Junior Engineering Grounds
Senior Humanities IT
History Security

Student Faculty

DOB DOB

Name Name

Department Department

Advisor Highest Degree

GPA Tenure

Student_Year Building

Salary

Domains as Lookup Tables

Degrees

Bachelors

Masters

PhD

Certificate

I —

Staff

DOB

Name

Building

Salary

Supervisor

Title

Even if you are not doing full normalization, it’s important to capture domain values in
tables. These can then be used to validate data and help build GUI front end pick lists.

Note an empty database, with no features or rows, still has domain tables.

www.scribekey.com

27



Recap

Consider a simple, table-centric, systematic and mechanical
approach to data modeling.

You can use a table/matrix approach to modeling your entities
(feature classes and tables) as collections of attribute sets, with
some attribute sets common to multiple entities. You can capture
relationships this way too.

You can easily capture this information in a metadata database,
then use querying and sorting to help you with your task.

The resulting attribute sets will match a class inheritance and/or an
class interface diagram.

When you know what attribute sets are common to multiple
entities, you can use UNION views to query on the common
elements.

Don’t automatically start creating a normalized set of entities if
your database is to support querying, reports, and map making.

Even if you aren’t normalizing, it’s still useful to store domains in
your metadata database as lookup tables, regular expressions, and
SQL Statements.



Thank You — Q&A

Brian Hebert
www.scribekey.com



http://www.scribekey.com/

